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Abstract We propose a monocular depth estimation

method SC-Depth, which requires only unlabelled videos

for training and enables the scale-consistent prediction

at inference time. Our contributions include: (i) we pro-

pose a geometry consistency loss, which penalizes the

inconsistency of predicted depths between adjacent views;

(ii) we propose a self-discovered mask to automatically

localize moving objects that violate the underlying static

scene assumption and cause noisy signals during train-

ing; (iii) we demonstrate the efficacy of each component

with a detailed ablation study and show high-quality

depth estimation results in both KITTI and NYUv2

datasets. Moreover, thanks to the capability of scale-

consistent prediction, we show that our monocular-trained

deep networks are readily integrated into ORB-SLAM2

system for more robust and accurate tracking. The pro-

posed hybrid Pseudo-RGBD SLAM shows compelling

results in KITTI, and it generalizes well to the KAIST

dataset without additional training. Finally, we provide

several demos for qualitative evaluation. The source

code is released on GitHub.

Keywords Unsupervised Depth Estimation, Scale

Consistency, Visual SLAM, Pseudo-RGBD SLAM

1 Introduction

The CNN-based monocular depth estimation (Eigen

et al. 2014) has shown significant promise for many

Computer Vision tasks. The supervised methods (Fu

et al. 2018; Yin et al. 2019) achieve high performance,

while they require expensive range sensors to capture

the ground-truth data for training. To this end, re-
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cent work explores unsupervised learning for monoc-

ular depth estimation, which either uses the calibrated

stereo pairs (Garg et al. 2016; Godard et al. 2017) or

unlabelled videos (Yin & Shi 2018; Zhou et al. 2017) for

training. In these frameworks, the color consistency be-

tween multiple views serves as the main supervision sig-

nal. Since they do not require ground truth labels, and

particularly the recent method (Gordon et al. 2019)

showing unsupervised depth estimation can work with

the unknown camera intrinsics, these methods attract

a lot of interest in the Computer Vision community. In

this paper, we are interested in the video-based unsu-

pervised learning framework because it has a minimum

requirement for training data.

Compared with stereo-based learning, video-based

learning (Zhou et al. 2017) is often more challenging due

to the unknown camera motion. More importantly, due

to scale ambiguity, a natural issue in monocular vision,

the predicted depth by the latter has an unknown scal-

ing to the real world. This is the so-called relative depth,

as opposed to the metric depth in the previous setting.

The relative depth is also widely used, e.g., ORB-S-

LAM (Mur-Artal et al. 2015) and COLMAP (Schon-

berger & Frahm 2016) both generate results up to an

unknown scale. However, one critical issue that we iden-

tify in video-based learning is that methods may gener-

ate scale-inconsistent predictions over different frames

since they suffer from a per-frame scale ambiguity. This

does not impact the single-image based tasks, while it

is critical for video-based applications, e.g., inconsistent

depths cannot be used for camera tracking in the Visual

SLAM system—See Fig. 9.

In this paper, we propose an improved unsupervised

learning framework for higher depth accuracy and con-

sistency. First, we propose a geometry consistency loss

(LG) to encourage networks to predict scale-consistent

depths. It explicitly penalizes the pixel-wise inconsis-

tency of predicted depths between adjacent frames dur-

ing training. It enables more effective learning and al-

https://github.com/JiawangBian/SC-Depth-Release
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(a) Predicted depth and textured point cloud

Start                         End

Car on roadside

(b) Qualitative evaluation of estimated trajectory

Fig. 1 Generalization on our self-captured video. The data is
collected in Adelaide, an Australia city. Our depth and pose
networks are trained on KITTI without additional finetuning.
The scene is so challenging that ORB-SLAM2 (Mur-Artal
& Tardós 2017) failed to initialize or quickly lost tracking
after initialization, while our Pseudo-RGBD SLAM system
can provide an accurate trajectory, which is consistent with
the Google Map. See more details in Sec. 5.4.

lows for more consistent predictions at inference time—

See Tab. 6. Second, we propose a self-discovered mask

(Ms) for handling moving objects during training, which

violates the underlying static scene assumption. It im-

proves the performance significantly (See Tab. 2) and

does not require additional overhead since the proposed

mask is simply derived from LG.

To show the benefits from scale-consistent depth

prediction and demonstrate our contribution for down-

stream tasks, we integrate our trained networks into

the ORB-SLAM2 (Mur-Artal & Tardós 2017) system

for more accurate and robust tracking. The proposed

hybrid Pseudo-RGBD SLAM system has distinct ad-

vantages over traditional monocular systems, including

a) it starts tracking at any frame without latency; b)

it enables more robust and accurate tracking with the

help of predicted depths; and c) it allows for dense

3D reconstruction—See Fig. 12. We report comprehen-

sive quantitative results and provide several demos in

Sec. 5.4 for qualitative evaluation. An example is shown

in Fig. 1, where we visualize the depth, point cloud, and

camera trajectory generated by our method on a real-

world driving video.

Our preliminary version was presented in NeurIPS

2019 (Bian et al. 2019b), where we propose an unsuper-

vised learning framework for scale-consistent depth and

pose estimation. In this paper, we i) add more techni-

cal details of our proposed method; ii) make a more

clear explanation of our contribution and distinguish

our method from existing methods; iii) improve our

learning framework by changing network architectures

and integrating effective components from related work;

iv) conduct a more comprehensive evaluation and show

the potential of our method to Visual SLAM.

2 Related work

Single-view depth estimation. The depth estimation prob-

lem was mainly solved by using traditional geometry

based methods (Geiger et al. 2011; Schönberger et al.

2016) before deep learning based methods emerged. They

rely on correspondences search (Bian et al. 2019a; Lowe

2004), model fitting (Bian et al. 2019c; Zhang 1998),

and multi-view triangulation (Hartley & Zisserman 2003).

Therefore, at least two different views of the scene are

required as input for computing the depth. In contrast,

recent deep learning based methods leverage the ex-

pressive power of convolutional neural networks, and

they are able to regress the depth from a single image

only. According to the training data, we can categorize

learning-based methods into four classes: First, (Eigen

et al. 2014) use the sensor captured depths (e.g., LiDAR

or RGB-D devices) as the ground truth for training.

The following work (Fu et al. 2018; Garg et al. 2019;

Huynh et al. 2020; Liu et al. 2016; Yin et al. 2019) pro-

poses more advanced network architectures or learning

objectives to improve the performance. These methods

achieve high performance, while it is expensive to cap-

ture ground-truth data in many real-world scenes. Sec-

ond, (Chen et al. 2019a; Li et al. 2019b; Li & Snavely

2018; Wang et al. 2019; Xian et al. 2018; Yin et al. 2020)

collect stereo images or videos from the web and use

off-the-shelf tools (e.g., stereo matching (Hirschmuller

2005) or multi-view stereo (Schönberger et al. 2016))

to compute dense ground-truth depths. Besides, (Ran-

ftl et al. 2020) export perfect depths from the syn-

thetic 3D movies (Butler et al. 2012). Although these

methods can obtain cheap ground-truth data, there of-

ten exists a domain gap between the collected data

and the desired scenes. More importantly, the learned

scale information is hard to generalize across different

scenes so that they often predict the relative depth.

This prevents them from predicting consistent depths
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on a video. Third, (Garg et al. 2016) use the calibrated

stereo images for training models, where they warp im-

ages using the predicted depth with the known cam-

era baseline and use the photometric loss to penalize

the warping error. Then (Godard et al. 2017) exploit

the left-right consistency in image pairs, and (Zhan

et al. 2018) exploit the temporary consistency in videos.

(Pilzer et al. 2018) leverage adversarial learning, and

(Poggi et al. 2020) study the uncertainty of predicted

depths. These methods can predict the metric depth,

while it requires well-calibrated stereo cameras to col-

lect training data. Fourth, (Zhou et al. 2017) train mod-

els from unlabelled videos, where they jointly train the

depth and pose networks using adjacent frames with

photometric loss and differentiable warping (Jaderberg

et al. 2015). Due to the simplicity and generality,, it

attracts a lot of researchers’ interests and inspires a

series of works, including (Chen et al. 2019b; Godard

et al. 2019; Gordon et al. 2019; Guizilini et al. 2020a,b;

Klingner et al. 2020; Mahjourian et al. 2018; Ranjan

et al. 2019; Wang et al. 2018; Yin & Shi 2018; Zhao

et al. 2020; Zhou et al. 2019; Zou et al. 2018). Our

method falls into this category, and we target improv-

ing the depth accuracy and consistency for advancing

downstream video-based tasks.

Scale consistency. It is an important problem in Visual

SLAM (Mur-Artal et al. 2015), but to the best of our

knowledge, we are the first ones to discuss the scale

inconsistency behind unsupervised video-based depth

learning. Nevertheless, we find that our proposed geom-

etry consistency loss is technically similar to two previ-

ous methods. First, (Mahjourian et al. 2018) propose a

3D ICP loss to penalize the misalignment of predicted

depths, where they approximate gradients for depth

and pose networks independently because the ICP is

not differentiable. This ignores second-order effects be-

tween depth and pose networks, and hence it limits

the performance. By contrast, our geometry consistency

loss is naturally differentiable and results in better per-

formance. Second, (Zou et al. 2018) propose a depth

consistency loss, which enforces corresponding points

in two images to have identical depth predictions. This

is physically incorrect because the scene depth is view-

dependent, i.e., it should be different in different views.

We instead synthesize the depth for the second view

using the predicted depth in the first view via rigid

transformation, and we penalize the difference between

predicted depths and synthesized depths in the second

view. Not only does our approach improve the depth

accuracy, but also it enables scale-consistent depth pre-

diction for advancing video-based applications such Vi-

sual SLAM (Mur-Artal & Tardós 2017). After the pub-

lication of our conference paper, we notice that more

recent works pay attention to consistent depth predic-

tion, including (Luo et al. 2020; Tiwari et al. 2020; Zhao

et al. 2020; Zou et al. 2020).

Moving objects. As the moving objects violate the un-

derlying static world assumption for learning depths,

related work often detects dynamic regions and masks

them out when computing the photometric loss. (Zhou

et al. 2017) predict a mask from a pair of images by us-

ing the neural network. However, due to lacking effec-

tive supervision signals, the performance is limited. (Vi-

jayanarasimhan et al. 2017) learn a moving object mask

from synthetic data (Menze & Geiger 2015), which is

often hard to generalize to real-world scenes. (Chen

et al. 2019b; Ranjan et al. 2019; Yin & Shi 2018; Zou

et al. 2018) additionally train an optical flow network

and compare the optical flow with depth-based map-

ping for detecting moving objects. This is effective, but

training an optical flow network is time-consuming due

to the complex correlation computation. (Casser et al.

2019a,b; Gordon et al. 2019; Guizilini et al. 2020b; Huynh

et al. 2020) leverage the semantic information for lo-

calizing dynamic objects. They either require the pre-

trained semantic segmentation network or need the man-

ually labelled class labels for multi-task training. (Go-

dard et al. 2019) mask out the moving objects that have

the same velocity as the camera, while it cannot handle

other object motions. Compared with previous meth-

ods, our method does not require semantic inputs and

does not require training additional networks. Our pro-

posed mask is analytically derived from the geometry

consistency loss, and it is able to handle arbitrary ob-

ject motions and occlusions. After ours, (Li et al. 2020)

propose to learn the dense 3D translation field of ob-

jects relative to the scene by using the neural network,

which is also efficient and effective.

Depth estimation for Visual SLAM. Traditional meth-

ods use either feature matching (Geiger et al. 2011;

Klein & Murray 2007) or direct image alignment (En-

gel et al. 2017; Forster et al. 2014) for camera tracking

and mapping. Recently, (Yin et al. 2017) use a super-

vised depth estimation model to help recover the abso-

lute scale for monocular methods. CNN-SLAM (Tateno

et al. 2017) uses the depth estimation network within

a monocular SLAM system for dense reconstruction.

CodeSLAM (Bloesch et al. 2018) jointly optimizes the

depth and pose via a learned latent code. Although

promising results are reported, these methods rely on

supervised training, which is not always available in

real-world scenarios. UndeepVO (Li et al. 2018) and

(Zhan et al. 2018) train depth and pose networks on

the calibrated stereo videos using the photometric loss,

and they show that the learned pose network can infer-

ence on monocular videos like a visual odometer. CNN-

SVO (Loo et al. 2019) combines the stereo-learned depth

network and SVO (Forster et al. 2014) for more accu-

rate trajectory estimation. DVSO (Yang et al. 2018a)

and D3VO (Yang et al. 2020) also train depth models on

stereo videos, and they further conduct geometric opti-

mization. Note that all the aforementioned methods do
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not suffer from the scale ambiguity issue, as opposed

to ours, because they can recover the metric depth. In

this paper, we show that the monocular-trained model

can predict the scale-consistent results, and it can be

used for visual odometry. After ours, (Zou et al. 2020)

propose to model the long-term dependency by using a

two-layer convolutional LSTM module, which improves

the pose prediction accuracy significantly. However, the

pure learning-based methods are easy to overfit, and we

believe that combing deep learning and geometry-based

methods is a more promising direction. As a result, our

hybrid system generalizes well to the previously unseen

dataset and to our self-captured videos.

3 SC-Depth

3.1 Framework Overview

Our goal is to train depth and pose CNNs from unla-

beled videos. Given two adjacent frames (Ia, Ib) ran-

domly sampled from a video, their depth maps (Da,

Db) and relative 6-DoF camera pose Pab are first esti-

mated by the depth and pose CNNs, respectively. With

the predicted depth and pose, we can synthesize the

reference image Ia using the source image Ib by differ-

entiable warping (Jaderberg et al. 2015), which gener-

ates I ′a. Then the network is supervised by the pho-

tometric loss between the real Ia and the synthesized

I ′a. To explicitly constrain the depth CNN to predict

scale-consistent results on adjacent frames, we propose

a geometry consistency loss LG. To handle invalid cases

such as static frames and dynamic objects, we introduce

two masks. First, a self-discovered mask Ms (Eqn. 7)

is introduced to reason the dynamics and occlusions by

checking the depth consistency. Fig. 2 illustrates the

proposed loss and mask. Second, we use the auto-mask

(Ma) (Godard et al. 2019) to remove stationary points

on image pairs where the camera is not moving.

Our objective function is formulated as follows:

L = αLM
P + βLS + γLG, (1)

where LM
P stands for the photometric loss LP weighted

by the proposed Ms. LS stands for the smoothness loss,

and LG is the geometric consistency loss. [α, β, γ] are

the loss weighting terms. The loss is averaged over valid

points, which are determined by Ma. In the following

sections, we first introduce the photometric loss and

smoothness loss in Sec. 3.2, then we describe the pro-

posed geometric consistency loss LG in Sec. 3.3 and the

self-discovered mask Ms in Sec. 3.4.1, and finally, we

elaborate the auto-mask Ma in Sec. 3.4.2.

3.2 Photometric and Smoothness Loss

Leveraging brightness constancy and spatial smooth-

ness priors is ubiquitous in classical dense correspon-

dence algorithms (Baker & Matthews 2004). Previous

works (Ranjan et al. 2019; Yin & Shi 2018; Zhou et al.

2017) have used the photometric loss between the warped

frame and the reference frame as an unsupervised loss

function for network training. With the predicted depth

Da and pose Pab, we synthesize I ′a by warping Ib, where

differentiable warping (Jaderberg et al. 2015) is used.

With the synthesized I ′a and the reference image Ia, we

formulate the objective function as

LP =
1

|V|
∑
p∈V

(λ‖Ia(p)−I ′a(p)‖1+(1−λ)
1− SSIMaa′(p)

2
),

(2)

where V stands for the set of valid points that are suc-

cessfully projected from Ia to the image plane of Ib,

and p stands for a generic point in V. We choose L1

loss due to its robustness to outliers. Besides, SSIMaa′

stands for the element-wise similarity between Ia and I ′a
by the SSIM function (Wang et al. 2004). This is used

to better handle complex illumination changes since it

normalizes the pixel illumination. More specifically,

SSIM (x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3)

where x, y stands for two 3 by 3 patches around the

central pixel. C1 and C2 are constants. µ and σ are

local statistics of the image color, i.e., mean and vari-

ance, respectively. Following (Godard et al. 2017; Ran-

jan et al. 2019; Yin & Shi 2018), we use C1 = 0.0001,

C2 = 0.0009, and λ = 0.15.

As the photometric loss is not informative in low-

texture regions of the scene, existing work also incor-

porates a smoothness prior to regularize the estimated

depth map. We adopt the edge-aware smoothness loss

used in (Ranjan et al. 2019). Formally,

LS =
∑
p

(e−∇Ia(p) · ∇Da(p))2, (4)

where ∇ is the first derivative along spatial directions.

It ensures smoothness to be guided by image edges.

3.3 Geometry Consistency Loss

To explicitly enforce geometry consistency, we constrain

that the predicted Da and Db (related by Pab) conform

the same 3D structure by penalizing their inconsistency.

Specifically, we propose a differentiable depth inconsis-

tency operation to compute the pixel-wise inconsistency

between two depth maps, as shown in Fig. 3. Here, Da
b

is the synthesized depth for Ib, which is generated by

Da and pose Pab with the underlying rigid transfor-

mation. D′b is an interpolation of Db for aligning and

comparing with Da
b . Given them, we compute the depth

inconsistency map Ddiff for each p ∈ V as:

Ddiff(p) =
|Da

b (p)−D′b(p)|
Da

b (p) +D′b(p)
, (5)
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differentiable depth
inconsistency (Fig. 2)

Fig. 2 Illustration of the proposed geometry consistency loss and self-discover mask. Given two consecutive frames (Ia, Ib),
we first estimate their depth maps (Da, Db) and relative pose (Pab) using the network. Then we compute the Ddiff (Eqn. 5),
i.e., pixel-wise depth inconsistency between Da and Db. Finally, we derive our geometric consistency loss LG (Eqn. 6) and
self-discovered mask Ms (Eqn. 7) from Ddiff to regularize the network training and hanlding dynamics and occlusions (Fig. 4).
For clarity, the photometric loss and smoothness loss are not shown in this figure.

Fig. 3 Differentiable depth inconsistency computation. This
operation takes two depth maps (Da, Db) and their relative
pose (Pab) as input and outputs the pixel-wise inconsistency.
Firstly, we project Da to 3D space and then to the image
plane of Db using Pab, obtaining the Da

b that stands for the
synthesized Db. Then, we hope to compute the difference be-
tween Da

b and Db. However, it is not practical because the
projection does not religiously lie in the grid of Db. Therefore,
we obtain the D′b by using the differentiable bilinear interpola-

tion (Jaderberg et al. 2015). Finally, we compare Da
b with D′b

to obtain the depth inconsistency (Ddiff). Here, we use the
relative loss (Eqn. 5), although other loss functions such as
L1 and L2 are also applicable.

where we normalize depth differences by their summa-

tion. This works better than the absolute distance in

practice as it treats points at different absolute depths

equally in optimization. Besides, the function is sym-

metric, and the outputs are naturally ranging from 0

to 1, which makes the training more stable.

With the inconsistency map, we define the proposed

geometry consistency loss as:

LG =
1

|V|
∑
p∈V

Ddiff(p), (6)

which minimizes the geometric inconsistency of pre-

dicted depths over two views. By minimizing the depth

inconsistency between samples in a batch, we naturally

propagate such consistency to the entire sequence: the

depth of I1 agrees with the depth of I2 in a batch; the

depth of I2 agrees with the depth of I3 in another train-

ing batch. Eventually, depths of Ii of a sequence should

all agree with each other, leading to scale-consistent re-

sults over the entire sequence.

3.4 Masking Scheme

The assumption of a moving camera and a static scene

is underlying in the unsupervised depth learning frame-

work, where the moving objects in the scene and image

pairs with identity camera pose provide invalid signals.

To be specific, the moving objects create the non-rigid

flow that cannot be represented by the depth-based

mapping, and the static camera consistently creates the

identical flow that is independent to the depth predic-

tion. Therefore, we propose to mask out these regions

by introducing a self-discovered mask (Ms) and adopt-

ing the auto-mask (Ma) by Monodepth2 (Godard et al.

2019). The proposed Ms computes weights (ranging

from 0 to 1) for points in V by checking their depth

consistency, and the Ma simply removes invalid points

from V. The proposed two masks are readily integrated

into the proposed learning framework.

3.4.1 Self Discovered Mask

As moving objects and occlusions naturally violate the

geometry consistency assumption, they will cause large

depth inconsistency in our pre-computed Ddiff (Eqn. 5).

This encourages us to define the Ms as:

Ms = 1−Ddiff, (7)

where the Ms is in [0, 1] and it attentively assign low

weights for geometrically inconsistent pixels and high

weights for consistent pixels.
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Fig. 4 Visual results of depth and masking. Top to bottom: sample image, estimated depth, self-discovered mask Ms, and
auto-mask Ma (Godard et al. 2019). The proposed Ms detects dynamics and occlusions (dark regions), and the binary mask
Ma finds invalid stationary points (black pixels).

3.4.2 Auto-Mask

To remove the invalid points in static pairs, e.g., two

images are captured at the same position, we use the

auto-mask Ma that is proposed in (Godard et al. 2019).

It compares the photometric losses between the map-

ping by depth and pose and the identity mapping, and

it removes the points where the identity mapping leads

to a lower loss. Formally, for each p ∈ V, we have

Ma(p) =

{
1 if ‖Ia(p)− I ′a(p)‖1 < ‖Ia(p)− Ib(p)‖1,
0 otherwise.

(8)

Here Ma is a binary mask for each point in V (valid

points), and I ′a is the warped image from the source

image Ib using the estimated depth and pose. It makes

the network to ignore objects that move at the same

velocity as the camera, and it even ignores whole frames

when the relative pose is identity.

3.4.3 How to use masks

First, to use Ma in our loss function, we remove invalid

points in V that have Ma(p) = 0. When training the

network, we only compute losses on the remaining valid

points. Second, we use the proposedMs to re-weight the

photometric loss in Eqn. 2 by:

LM
P =

1

|V|
∑
p∈V

(Ms(p) · LP (p)). (9)

This mitigates the noisy signals caused by moving ob-

jects and occlusions. Fig. 4 shows visual results for the

two types of masks, which coincides with our antici-

pation. The dark regions in Ms correspond to moving

objects that violate the static scene assumption, e.g.,

the car region and human ride region. In the binary

Ma, black regions correspond to pixels that have simi-

lar speed with the camera, e.g., the moving vehicle in

the left example and the static scene in the right ex-

ample. Tab. 2 shows the ablation study results, which

shows that the proposed masks results in a significant

performance improvement.

4 Pseudo-RGBD SLAM

In this section, we present a Pseudo-RGBD SLAM sys-

tem, which is based on our trained models and exist-

ing SLAM systems. We overview the system pipeline

in Sec. 4.1, followed by elaborating each component in

Sec. 4.2, and finally, we discuss the advantages and lim-

itations of the proposed system in Sec. 4.3.

4.1 System Overview

Fig. 5 shows an overview of the proposed method, which

is composed of our SC-Depth, ORB-SLAM2 (Mur-Artal

& Tardós 2017), and InfiniTAMv3 (Prisacariu et al.

2017). The whole system takes a monocular RGB video

as input and outputs a globally consistent 6-DoF cam-

era trajectory and sparse/dense 3D maps. First, we ini-

tialize the tracking and mapping by using the predicted

depth on the starting frame I0, which creates an initial

3D map. Second, for a new frame It, we estimate its

depth and relative pose to the previous view It−1 using

our trained networks. As the camera pose of It−1 has

been known from previous tracking or initialization, we

can obtain the pose estimate for the current view by

accumulation. Third, we feed the color image, depth

map, and the estimated pose for It as input into ORB-

SLAM2 (Mur-Artal & Tardós 2017), which performs

matching and optimization, resulting in an optimized

camera pose as well as an increased map. In such an in-

cremental way, we eventually obtain a globally consis-

tent camera trajectory and a sparse 3D map from the

video. Finally, we feed the color images, depth maps,

and camera trajectories into InfiniTAMv3 (Prisacariu
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Fig. 5 Pipeline of Pseudo-RGBD SLAM. For the current frame It, we first estimate its depth Dt using our trained depth
CNN. Then, we estimate its relative pose to previous frame It−1 (its pose Pt−1 has been known in previous tracking) to
recover the current pose. Next, we feed the color images, predicted depths, and estimated poses into ORB-SLAM2 (Mur-Artal
& Tardós 2017), which outputs the accurate camera trajectory and a sparse 3D map. Finally, given the consistent depth and
camera trajectory, we construct the dense voxel representation using InfiniTAMv3 (Prisacariu et al. 2017). Note that the dense
reconstruction here is only used for qualitative demonstration.

et al. 2017), which fuses depth maps to construct the

dense and textured voxel volumes.

4.2 System Details

ORB-SLAM2. The original RGB-D system takes the

sensor captured depth as input, while we use the esti-

mated depth. It relies on ORB features (Rublee et al.

2011) to generate correspondences, and it minimizes

the reprojection error for pose optimization. Poor cor-

respondences (beyond the error threshold) are detected

and removed as outliers, and the remaining correspon-

dences are used for all sub-tasks, including tracking,

mapping, loop closing, and re-localization. We will elab-

orate on how our predicted depth and pose influence the

correspondence and optimization in the system.

Depth. The predicted depths are used to initialize a 3D

map at the beginning, and they are used in the objec-

tive function during optimization. Specifically, beyond

2d reprojection error, the system also minimizes the dif-

ference between the projected depth (from the 3D map

to the image) and the predicted depth. Formally,E2D =
√

(px − p′x)2 + (py − p′y)2

E3D =
√

(px − p′x)2 + (py − p′y)2 + (pd − p′d)2,

(10)

where p stands for points in current image plane, and

p′ stands for points projected from 3D map. pd and

p′d are their disparities, i.e., inverse depths. Note that

pd is computed from our predicted depth map, so it is

unavailable in the monocular system. This extends the

reprojection error from 2D into 3D, which greatly im-

proves the performance. Consequently, the consistency

of estimated depths is vital in tracking. For example,

inconsistent depths would increase the reprojection er-

ror, and correct matches would be wrongly removed as

outliers, which causes the system to fail—See Fig. 9.

Pose. The predicted pose is used as the initial pose

during tracking, in which the system first projects the

sparse keypoints in a 3D map to the live view using the

estimated pose and then searches for correspondences

in the neighboring regions. The camera pose is opti-

mized through the Bundle Adjustment (Mur-Artal &

Tardós 2017). After tracking, we enrich the 3D map by

unprojecting the keypoints detected in the live view to

the map using the optimized camera pose. The original

ORB-SLAM2 uses the constant velocity motion model

for initial pose, which simply assumes that the camera

motion is the same as the previous frame. Formally,

Tt→t+1 =

{
Tt−1→t ORB-SLAM2,

PoseNet(It, It+1) Ours,
(11)

where T stands for relative pose. However, this assump-

tion is often violated in real scenarios, such as abrupt

motion in driving scenes. Though these frames are few

in the sequence, they usually contribute the most of the
drift in the final evaluation. Our trained pose CNN has

the potential to cope with these cases.

InfiniTAMv3. It takes RGB-D videos and can densely

reconstruct the scene structure. We disable the internal

tracking module and use our optimized camera poses

and predicted depths for reconstruction. This is only

used for visualization purposes, and it is also a demon-

stration of our consistent results. Note that the dense

reconstruction is very sensitive to geometry consistency,

i.e., it will crash when depths are not sufficiently con-

sistent. Fig. 11 shows the screenshot of our demo, which

can be found in the supplementary material.

4.3 Discussion

Our proposed SLAM system leverages the advantage

of deep learning, and it optimizes the predicted poses

in the multi-view geometry-based framework. This has

distinctive advantages over existing solutions.
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Advantages. Compared with classical monocular SLAM

systems such as ORB-SLAM2 (Mur-Artal & Tardós

2017), our advantages include:

1. ORB-SLAM2 is often hard to initialize because it re-

quires the multi-view triangulation, while our method

can initialize at any time without latency by using

the estimated dense depth—See Fig. 9.

2. ORB-SLAM2 often loses tracking when the 3D map

is over-sparse, while our method is more robust be-

cause we can enrich the map by using the predicted

dense depth—See Fig. 9.

3. ORB-SLAM2 can only provide a sparse map, while

our method enables dense 3D reconstruction by us-

ing the predicted dense depth—See Fig. 12.

Compared with learning-based methods (Li et al. 2018),

our advantage is the post geometric optimization e.g.,

Loop Closing (Mur-Artal & Tardós 2014), which can

effectively correct drifts and improve the performance,

as shown in Fig. 8.

Limitations. Our method cannot recover the absolute

scale because only monocular videos are used. However,

in real-world applications, the metric scale can be re-

covered by using other sensors and cues, like IMU and

road landmarks.

5 Experiments

5.1 Implementation details

Network architecture. Our depth network takes a single

RGB image as input and outputs an inverse depth map.

It is a U-Net structure (Ronneberger et al. 2015), and

we use the ResNet50 (He et al. 2016) encoder to extract
features. The decoder is the DispNet as used in (Zhou

et al. 2017). The activations are sigmoids at the output

layer and ELU nonlinearities (Clevert et al. 2015) else-

where. We convert the sigmoid output x to depth with

D = 1/(ax+ b), where a and b are chosen to constrain

D between 0.1 and 100 units. It is a widely assumed

depth range for outdoor driving scenes, which is the

same with all related works (Ranjan et al. 2019; Yin &

Shi 2018; Zhou et al. 2017). Besides, our pose network

accepts two RGB frames as input and outputs their 6D

relative camera pose. We use the ResNet18 (He et al.

2016) encoder to extract features. In order to accept

two frames, we modify the first layer to have six chan-

nels. Then features are decoded to 6-DoF parameters

via four convolutional layers.

Single scale supervision. Previous methods compute the

losses on an image pyramid, i.e., usually four layers.

They either work on the decoder’s side outputs (Yin

& Shi 2018; Zhou et al. 2017; Zou et al. 2018) or up-

sample them to the original image resolution (Godard

et al. 2019). However, it introduces great computational

overhead in training. By contrast, we only compute the

loss on the original image resolution. This has a less

computational cost and achieves on par performance

with the multi-scale solution in MonoDepth2 (Godard

et al. 2019), as shown in Tab. 2. The motivation is

that we empirically find that the supervision on low-

resolution images is inaccurate, and the camera move-

ment between training image pairs is small so that the

multi-scale solution is unnecessary.

Training details. We implement the proposed method

using the PyTorch (Paszke et al. 2017). Following (Ran-

jan et al. 2019; Wang et al. 2018; Zhou et al. 2017),

we use a snippet of three sequential video frames as a

training sample. We compute the projection and losses

from the second frame to others and reverse them again

for maximizing the data usage. The images are aug-

mented with random scaling, cropping, and horizontal

flips during training. We use ADAM (Kingma & Ba

2014) optimizer and set the learning rate to be 10−4.

During training, we set α = 1.0, β = 0.1, and γ = 0.5

in Eqn. 1. For fast convergence, we initialize the en-

coder of our networks by using the pre-trained model

on ImageNet (Deng et al. 2009).

Datasets. For depth estimation evaluation, we use both

the KITTI (Geiger et al. 2013) and NYUv2 (Silber-

man et al. 2012) datasets. In KITTI, we use the same

training/testing split as in (Zhou et al. 2017). The 697

images are used for testing. We train the network for

200K iterations, where we set the batch size to be 4

and resize images to 832 × 256 resolution for training.

In NYUv2, we use the officially provided 654 densely

labeled images for testing, and use the rest sequences

(no overlapping with the testing scenes) for training.

We extract one frame from every 10 frame in the orig-

inal video to remove redundant frames, and we resize

images to 320× 256 resolution as input of the network.

We train models for 50 epochs, and the batch size is

8. For visual odometry evaluation, we use the KITTI

odometry dataset (Seq. 00-08) for training, and we test

our method on the Seq. 09-10. Moreover, we use the

KAIST urban dataset (Jeong et al. 2019) to validate

the zero-shot generalization ability of our method. We

use one of the hardest scenes (urban39-pankyo), which

contains more than 18000 street-view images, and we

split it into 9 sequences with each sequence containing

2000 images for testing.

Evaluation metrics. For depth evaluation, following pre-

vious methods (Yin et al. 2019; Zhou et al. 2017), we

use the mean absolute relative error (AbsRel), mean

log10 error (Log10), root mean squared error (RMS),

root mean squared log error (RMSlog), and the accu-

racy under threshold (δi < 1.25i, i = 1, 2, 3). As un-

supervised methods cannot recover the absolute scale,
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Table 1 Single-view depth estimation results on KITTI (Geiger et al. 2013). Legends: D—depth supervision; S—stereo pairs;
M—monocular snippets; L—semantic labels or networks; F—joint learning with optical flow.

Error ↓ Accuracy ↑
Methods Resolution Supervision AbsRel SqRel RMS RMSlog δ1 δ2 δ3
(Eigen et al. 2014) 612× 184 D 0.203 1.548 6.307 0.282 0.702 0.890 0.958
(Kuznietsov et al. 2017) 621× 187 S+D 0.113 0.741 4.621 0.189 0.862 0.960 0.986
DORN (Fu et al. 2018) 513× 385 D 0.072 0.307 2.727 0.120 0.932 0.984 0.994
VNL (Yin et al. 2019) 385× 385 D 0.072 - 3.258 0.117 0.938 0.990 0.998

(Garg et al. 2016) 620× 188 S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
(Godard et al. 2017) 512× 256 S 0.148 1.344 5.927 0.247 0.803 0.922 0.964
(Zhan et al. 2018) 608× 160 S+M 0.144 1.391 5.869 0.241 0.803 0.928 0.969
SuperDepth+pp (Pillai et al. 2019) 1024× 382 S 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2-S(Godard et al. 2019) 1024× 320 S 0.107 0.849 4.764 0.201 0.874 0.953 0.977
Monodepth2-MS(Godard et al. 2019) 1024× 320 S+M 0.106 0.806 4.630 0.193 0.876 0.958 0.980
D3VO (Yang et al. 2020) 512× 256 S+M 0.099 0.763 4.485 0.185 0.885 0.958 0.979

Geonet-Resnet (Yin & Shi 2018) 416× 128 M+F 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DF-Net (Zou et al. 2018) 576× 160 M+F 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Struct2Depth (Casser et al. 2019a) 416× 128 M+L 0.141 1.026 5.291 0.215 0.816 0.945 0.979
DW(Gordon et al. 2019) 416× 128 M+L 0.128 0.959 5.230 0.212 0.845 0.947 0.976
GLNet(Chen et al. 2019b) 416× 128 M+F 0.135 1.070 5.230 0.210 0.841 0.948 0.980
CC (Ranjan et al. 2019) 832× 256 M+F 0.140 1.070 5.326 0.217 0.826 0.941 0.975
EPC++ (Luo et al. 2019) 832× 256 M+F 0.141 1.029 5.350 0.216 0.816 0.941 0.976
(Zhao et al. 2020) 832× 256 M+F 0.113 0.704 4.581 0.184 0.871 0.961 0.984

Insta-DM (Lee et al. 2021) 832× 256 M+F+L 0.112 0.777 4.772 0.191 0.872 0.959 0.982
SGDepth-full (Klingner et al. 2020) 1280× 384 M+L 0.107 0.768 4.468 0.186 0.891 0.963 0.982
PackNet-Sem (Guizilini et al. 2020b) 1280× 384 M+L 0.100 0.761 4.270 0.175 0.902 0.965 0.982
SfMLearner (Zhou et al. 2017) 416× 128 M 0.208 1.768 6.856 0.283 0.678 0.885 0.957
(Yang et al. 2018b) 416× 128 M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Vid2Depth (Mahjourian et al. 2018) 416× 128 M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
DDVO (Wang et al. 2018) 416× 128 M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
(Zhou et al. 2019) 1248× 384 M 0.121 0.837 4.945 0.197 0.853 0.955 0.982
MonoDepth2 (Godard et al. 2019) 1024× 320 M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
(Li et al. 2020) 416× 128 M 0.130 0.950 5.138 0.209 0.843 0.948 0.978
PackNet-SfM (Guizilini et al. 2020a) 1280× 384 M 0.107 0.802 4.538 0.186 0.889 0.962 0.981

Ours-R18 416× 128 M 0.132 0.982 5.226 0.209 0.835 0.947 0.978
Ours-R50 416× 128 M 0.126 0.920 5.245 0.208 0.840 0.949 0.979
Ours-R18 832× 256 M 0.119 0.857 4.950 0.197 0.863 0.957 0.981
Ours-R50 832× 256 M 0.114 0.813 4.706 0.191 0.873 0.960 0.982

Table 2 Ablation study results on KITTI. We use the
ResNet18 model, and the image resolution is 416× 128.

Models AbsRel δ1 Time
Baseline (B) 0.200 0.786

10h
B+LG 0.155 0.786
B+LG+Ms 0.137 0.822
B+LG+Ma 0.153 0.797
B+LG+Ms+Ma (Ours) 0.132 0.835

Ours with NCC 0.145 0.804 11h
Ours + Multi-Scale 0.134 0.829 21h

Table 3 Trade-offs between image resolution, network, and
speed. We train models on KITTI using a TESLA V100 GPU
and test the inference speed in an RTX 2080 GPU.

Resolution Model AbsRel δ1 Train Infer

416× 128
R18 0.132 0.835 10h 228 fps

R50 0.126 0.840 16h 110 fps

832× 256
R18 0.119 0.863 29h 133 fps
R50 0.114 0.873 37h 59 fps

we multiply the predicted depth maps by a scalar that

matches the median with that of the ground truth, as

in (Zhou et al. 2017). The predicted depths are capped

at 80m/10m in KITTI and NYUv2 datasets, respec-

tively. For visual odometry evaluation, we follow the

image monodepth2 ours

Fig. 6 Qualitative comparison with the Monodepth2 (Go-
dard et al. 2019) on KITTI.

standard evaluation metrics, including the translational

(terr) and rotational errors (rerr) averaged over the en-

tire sequence (Geiger et al. 2013), and the absolute tra-

jectory error (ATE) (Sturm et al. 2012).

5.2 Depth Estimation

Results on KITTI. Tab. 1 shows the results, which shows

that the supervised methods (Fu et al. 2018; Yin et al.
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Table 4 Single-view depth estimation results on NYUv2 (Silberman et al. 2012). Legends: D—depth supervision; M—
unsupervised training using monocular snippets; F—joint learning with the optical flow; WR—weak rectification (Bian et al.
2020) which pre-processes the hand-held camera captured videos for better training. More specifically, (Bian et al. 2020) remove
the relative rotation between training pairs since they find that it is hard for the pose network to learn image rotation.

Methods Resolution Supervision
Error ↓ Accuracy ↑

AbsRel Log10 RMS δ1 δ2 δ3
Make3D (Saxena et al. 2006) - D 0.349 - 1.214 0.447 0.745 0.897
(Wang et al. 2015) - D 0.220 0.094 0.745 0.605 0.890 0.970
(Eigen & Fergus 2015) 320× 240 D 0.158 - 0.641 0.769 0.950 0.988
(Chakrabarti et al. 2016) 561× 427 D 0.149 - 0.620 0.806 0.958 0.987
(Laina et al. 2016) 304× 228 D 0.127 0.055 0.573 0.811 0.953 0.988
(Li et al. 2017) 310× 232 D 0.143 0.063 0.635 0.788 0.958 0.991
DORN (Fu et al. 2018) 353× 257 D 0.115 0.051 0.509 0.828 0.965 0.992
VNL (Yin et al. 2019) 385× 385 D 0.108 0.048 0.416 0.875 0.976 0.994

(Zhou et al. 2019) 256× 192 M+F 0.208 0.086 0.712 0.674 0.900 0.968
(Zhao et al. 2020) 576× 448 M+F 0.189 0.079 0.686 0.701 0.912 0.978

Monodepth2 (Godard et al. 2019) 320× 256 M 0.176 0.074 0.639 0.734 0.937 0.983
Ours-R18 320× 256 M 0.159 0.068 0.608 0.772 0.939 0.982
Ours-R50 320× 256 M 0.157 0.067 0.593 0.780 0.940 0.984

Monodepth2 (Godard et al. 2019) 320× 256 WR-M 0.151 0.064 0.559 0.795 0.947 0.985
Ours-R18 320× 256 WR-M 0.143 0.060 0.538 0.812 0.951 0.986
Ours-R50 320× 256 WR-M 0.142 0.060 0.529 0.813 0.952 0.987

2019) are best-performing, followed by the stereo trained

models (Yang et al. 2020). Besides, it shows that learn-

ing with semantic labels (Guizilini et al. 2020b) or op-

tical flow (Zhao et al. 2020) can effectively improve the

performance of monocular methods. We are here more

interested in the monocular methods that do not use

additional information. In this category, our method

outperforms previous methods (before 2020), and it

shows on par performance with the MonoDepth2 (Go-

dard et al. 2019). However, we argue that our advantage

against Monodepth2 is the depth consistency (Tab. 6),

which has important implications on downstream video-

based tasks. For example, contributed to the consistent

depth prediction, our method can be readily plugged

into the Visual SLAM systems, while the Monodepth2

is unable—See Fig. 9 for detailed analysis.

Efficacy of the proposed methods. Tab. 2 summarizes

the results. It shows that the proposed LG makes train-

ing more stable by enforcing depth consistency, and

the proposed Ms can boost performance significantly

by handling scene dynamics. Besides, it shows that us-

ing Ma can contribute to extra marginal performance

improvement by removing the stationary points. Con-

sequently, the final solution (with all terms) can achieve

the best performance. Moreover, Tab. 3 shows the re-

lation between depth accuracy, training time, inference

speed, network architecture, and image resolution.

Multi-scale supervision. Tab. 2 shows the results of our

method with the modified multi-scale solution proposed

in (Godard et al. 2019). It upsamples the predicted four

depth maps to original image resolution and then com-

putes losses instead of downsampling the original color

image (Zhou et al. 2017). The result demonstrates that

our method could hardly benefit from that, and it re-

Input (Zhou et al. 2019) Ours GT(Zhao et al. 2020)

Fig. 7 Qualitative comparison with the state-of-the art un-
supervised methods on NYUv2.

quires two times longer time for training. Therefore, we

use single-scale supervision in our framework.

SSIM vs NCC. Tab. 2 shows the results of our method

with the normalized cross-correlation (NCC) loss, in

which we replace the SSIM. Both losses compute the

local image similarity on a 3 by 3 patch. The results

show that SSIM leads to better performance than NCC

in our unsupervised learning framework.

Results on NYUv2. Tab. 4 shows the results, which

shows that our method outperforms previous unsuper-

vised methods by a large margin. Besides, following

(Bian et al. 2020), we remove the relative rotation be-

tween training image pairs since they find that it is

hard for the pose network to learn image rotation. This

leads to a significant improvement because rotation is

the dominate ego-motion in hand-held camera captured
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Table 5 Visual odometry results on KITTI (Geiger et al. 2013). S/M stands for training on stereo/monocular videos, and G
stands for geometric optimization. 7 stands for failure in initialization or tracking.

Methods Types
Seq. 09 Seq. 10

terr (%) rerr (◦/100m) ATE(m) terr (%) rerr (◦/100m) ATE(m)
Depth-VO-Feat (Zhan et al. 2018) S 11.89 3.60 52.12 12.82 3.41 24.70
UndeepVO (Li et al. 2018) S 7.01 3.60 - 10.63 4.60 -
PoseGraph (Li et al. 2019a) S + G 6.23 2.11 - 12.9 3.17 -
DVSO (Yang et al. 2018b) S + G 0.83 0.21 - 0.74 0.21 -
D3VO (Yang et al. 2020) S + G 0.78 - - 0.62 - -
SfMLearner (Zhou et al. 2017) M 19.15 6.82 77.79 40.40 17.69 67.34
GeoNet (Yin & Shi 2018) M 28.72 9.8 158.45 23.90 9.0 43.04
DeepMatchVO (Shen et al. 2019) M 9.91 3.8 27.08 12.18 5.9 24.44
MonoDepth2 (Godard et al. 2019) M 17.17 3.85 76.22 11.68 5.31 20.35
DW (Gordon et al. 2019)-Learned M - - 20.91 - - 17.88
DW (Gordon et al. 2019)-Corrected M - - 19.01 - - 14.85
(Zou et al. 2020) M 3.49 1.00 11.30 5.81 1.8 11.80

(Zhao et al. 2020) M + G 6.93 0.44 - 4.66 0.62 -
SC-Depth (Ours w/o LG) M 12.43 4.65 83.27 11.86 4.95 21.19
SC-Depth (Ours) M 7.31 3.05 23.56 7.79 4.90 12.00
Pseudo-RGBD SLAM (MonoDepth2) M + G 7 7 7 7 7 7
Pseudo-RGBD SLAM (Ours w/o LG) M + G 7.81 2.44 34.15 7.62 2.41 9.02
Pseudo-RGBD SLAM (Ours - Motion Model) M + G 5.70 1.33 13.22 3.82 1.76 5.96
Pseudo-RGBD SLAM (Ours - Pose CNN) M + G 5.08 1.05 13.40 4.32 2.34 7.99
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Fig. 8 Estimated trajectory on Seq. 09 (left) and 05 (right). The results optimized by the proposed Pseudo-RGBD SLAM are
more accurate than our SC-Depth and other learning-based methods, and the improvement is especially large when loops are
detected and closed. For example, the terr is reduced from 5.91 to 1.67 on Seq. 05.

videos. (Zhao et al. 2020) solves the problem by replac-

ing the Pose CNN with a traditional geometry-based

pose solver. The qualitative results are shown in Fig. 7.

We find that MonoDepth2 (Godard et al. 2019) often

collapses in training, so we report the best result. Com-

pared with the supervised methods, our method is in-

ferior to the state-of-the-art (Yin et al. 2019) but out-

performs many previous methods (Chakrabarti et al.

2016; Eigen & Fergus 2015; Li et al. 2017; Liu et al.

2016; Saxena et al. 2006; Wang et al. 2015).

5.3 Visual Odometry

Comparing with deep learning based methods. Tab. 5

shows the visual odometry results on KITTI. For meth-

Table 6 Depth consistency results on Seq. 09. Fitness mea-
sures the overlapping area of two point clouds (# of inlier
correspondences / # of points in target). RMSE is averaged
over all inlier correspondences (#Corr).

Methods Fitness (↑) RMSE (↓) #Corr (↑)
MonoDepth2 0.384 9.84e-3 80.776K
Ours (w/o LG) 0.663 8.90e-3 129.825K
Ours 0.689 8.71e-3 134.956K

ods that train on monocular videos, we align the scale

of their predicted results with the ground truth by us-

ing the 7-DoF optimization. The results show that the

proposed SC-Depth outperforms the previous monocu-

lar alternatives, and it even shows on par performance

with the stereo trained method (Li et al. 2018). How-
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Fig. 9 Number of tracked keypoints on Seq. 09. We extract
2000 feature points for all methods, and the values in the
figure are smoothed for visualization.

Table 7 Visual odometry results on KITTI. We evaluate the
results on all frames and on keyframes that are selected by
the ORB-SLAM2 since the latter cannot provide results for
the full sequence due to unsuccessful initialization or tracking
failure. The ATE (m) metric is used. We use 2K keypoints
as default, and we analyze the effect of keypoint numbers on
system performance by increasing it to 8K.

ORB KeyFrames All Frames
Seq Frames ORB Ours Frames Ours-2K Ours-8K
00 1928 6.33 6.43 4541 6.05 6.57
01 395 468.9 299.11 1101 289.29 301.08
02 2445 26.18 8.86 4661 8.79 9.42
03 361 1.21 2.92 801 3.00 3.71
04 149 1.73 2.75 271 2.64 2.89
05 1129 4.78 4.47 2761 4.35 5.58
06 479 13.34 4.11 1101 4.35 6.10
07 467 2.28 0.77 1101 0.76 2.39
08 2129 49.23 18.48 4071 19.37 20.10
09 871 50.78 13.43 1591 13.40 17.16
10 549 7.26 7.52 1201 7.99 6.48

Table 8 Zero-short generalization on KAIST dataset (Jeong
et al. 2019). We compare our method with ORB-SLAM2 us-
ing the ATE (m) metric.

ORB KeyFrames All Frames (2K)
Seq Frames ORB Ours Ours
00 189 7.04 2.35 2.21
01 286 21.06 3.90 4.29
02 231 11.95 4.65 5.11
03 150 11.67 2.71 2.59
04 140 3.80 2.00 1.67
05 201 55.87 27.46 28.34
06 306 136.85 7.47 7.78
07 304 10.41 16.27 16.48
08 185 2.48 1.66 1.44

ever, it is not as good as the very recent approach (Zou

et al. 2020) that models the long-term geometry by us-

ing the LSTM module. Besides, the results show that

the proposed Pseudo-RGBD SLAM system improves

the accuracy significantly over our SC-Depth, which

is contributed to the geometric optimization. The suc-

cess of D3VO (Yang et al. 2020) also confirms the im-
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Fig. 10 Estimated trajectory on Seq. 08. ORB-SLAM2 is
hard to maintain consistent scales over a long video (e.g.,
left is small, and right is big), while our method is able by
leveraging the scale-consistent depth prediction.

portance of geometric optimization for odometry ac-

curacy. However, note that stereo-trained methods can

estimate depths at the metric scale, which are readily

optimized in existing SLAM frameworks. By contrast,

the monocular trained methods suffer from the scale

inconsistency issue, which makes the post-optimization

non-trivial—See Fig. 9. Our contribution here is en-

abling the monocular trained methods to predict the

scale consistent results so that it allows for optimiz-

ing the predicted depths and poses by using the clas-

sical geometric frameworks. A qualitative comparison

is provided in Fig. 8, which shows that the trajectory

optimized by our Pseudo-RGBD SLAM is more well-

aligned with the ground truth than our SC-Depth and

other learning-based methods.

Depth consistency evaluation. We evaluate the geome-

try consistency of predicted depths by using the point

cloud registration metric that is implemented in the

Open3D library (Zhou et al. 2018). To be specific, we

use the “open3d.registration.evaluate registration” func-

tion. It computes the RMSE of two aligned point clouds

and recognizes the inlier correspondences by a constant

threshold. Then it measures the overlapping area of

point clouds by counting the ratio of inlier correspon-

dences in all the target points. More details can be

founded in the Open3D library. For a given testing

sequence, we predict the depth and relative pose for

every adjacent image pair, and we convert the depth

into point clouds for evaluation, where all the depth

maps are resized to 832× 256 resolution for a fair com-

parison. Tab. 6 shows the results, where we compare

our method with Monodepth2 (Godard et al. 2019). It

shows that our predicted depths are significantly more

consistent than the latter, and we hypothesize this is

the reason why our method can be readily plugged into

the ORB-SLAM2 system while the Monodepth2 fails.

We conduct a more detailed comparison by reporting

the number of tracked keypoints in each frame. The

results are shown in Fig. 9.
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Fig. 11 Dense multi-view reconstruction on Seq. 09. The left column shows the reconstructed 3D voxels. The right column
shows the input RGB image, estimated depth map. We use the depth CNN trained on Seq. 00-08, and the predicted depth is
cropped and masked by using our proposed Ms.

Pose network or motion model. Tab. 5 shows the re-

sults, where using the built-in motion model in ORB-

SLAM or using our pose CNN for pose initialization

leads to similar performance. We conjecture the reason

is that the motion model is satisfied in most driving

scenarios, where forward motion is dominant. However,

we believe that using the pose network is a more general

solution because the constant velocity model is violated

when abrupt motion occurs.

Comparing with ORB-SLAM2. Tab. 7 shows the odom-

etry results on KITTI (Geiger et al. 2013). We evaluate

results on all frames and on keyframes that are selected

by ORB-SLAM2 (Mur-Artal & Tardós 2017), since the

latter cannot provide results for the full sequence due

to unsuccessful initialization or tracking failure. The

results on eleven sequences show that our method ei-

ther achieves on par accuracy with the ORB-SLAM2

or significantly outperforms the latter. Besides track-

ing accuracy, our system is more robust than the ORB-

SLAM2. A detailed comparison is provided in Fig. 9,

where our method always tracks more points than the

latter (e.g., about 800 vs 100). Moreover, we find that

ORB-SLAM2 sometimes suffers from heavy scale drifts

in long sequences—See Fig. 10 where ORB-SLAM2 pro-

vides inconsistent scales between left and right parts.

In this scenario, our method can maintain a consistent

scale over the entire sequence by leveraging the scale-

consistent depth prediction.

Using more or less keypoints. Tab. 7 shows the ablation

study results, where our system with 2K keypoints is

more accurate than that with 8K keypoints. We con-

jecture the reason is that using more keypoints would

also introduce more outliers, while the geometric opti-

mization requires only a few accurate sparse points. We

hence recommend users choosing keypoint numbers by

considering the trade-off between the system accuracy

and robustness (Fig. 9).

Zero-short generalization. We validate the generaliza-

tion ability of our proposed Pseudo-RGBD SLAM on

KAIST urban dataset (Jeong et al. 2019), where our

models are trained on KITTI. The results are reported

Fig. 12 Point cloud visualization on Seq. 09. For each incom-
ing image (right 1st row), we predict the depth map (right
2nd row) using our trained network and convert it to a 3D
point cloud, which is rendered using the color image and vi-
sualized in an eye-bird view (left).

in Tab. 8. It shows that our method consistently outper-

forms ORB-SLAM2, which demonstrates the robust-

ness of our proposed system. Moreover, we demonstrate

the generalization ability of our method by presenting

a real-world demo—See Fig. 1.

5.4 Qualitative Evaluation

We provide several demos in the supplementary mate-

rial, which are briefly described below.

Per-frame 3D visualization. Fig. 12 shows the visual-

ization for predicted depths and textured point clouds

on Seq. 09. We use the model trained on Seq. 00-08.

This demo is to show that the predicted scene or ob-

ject structure by our trained depth CNN is visually

reasonable, and their scales are consistent over time.

Note that inconsistent prediction would cause flicker-

ing videos, while it is doesn’t occur in our demo.

Dense multiple view reconstruction. Fig. 11 shows our

dense reconstruction demo. As the depth range is wild

in outdoor scenes, we have to reduce the voxel size of

TSDF (Curless & Levoy 1996) for affording the memory

requirement, which degrades the reconstruction quality.
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Although the reconstruction is inferior to the state-of-

the-art methods, this demo clearly demonstrates the

high consistency of our estimated depths.

Generalization on real-world videos. Fig. 1 shows the

depth and camera trajectory generated by our method

on a self-captured driving video. The video is captured

in Adelaide, Australia. We use a single camera, which

is mounted on a driving car. Due to the lack of an ac-

curate ground truth trajectory, we use the Google map

for qualitative evaluation. The scene is so challenging

that ORB-SLAM2 (Mur-Artal & Tardós 2017) is unable

to generate a complete trajectory, while the proposed

Pseudo-RGBD SLAM performs well.

6 Conclusion

This paper proposes a video-based unsupervised depth

learning method. Thanks to the proposed geometry con-

sistency loss and masking scheme, our trained network

can predict scale-consistent and accurate depths over

a video. The depth accuracy is comprehensively evalu-

ated in both indoor and outdoor scenes, and the quan-

titative results are attached. Besides, we demonstrate

better consistency against the related work which shows

on par depth accuracy to our method, and we show

that such consistency enables our method to be readily

plugged into the existing Visual SLAM system. This

shows the possibility of leveraging the depth network

that is unsupervised trained from monocular videos for

camera tracking and dense reconstruction.
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