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Abstract

We present a novel method to synthesize novel view self-
ies from a mobile phone captured video. This is challenging
due to the inconsistent geometry that is caused by the per-
son’s unavoidable movement. Recent methods reconstruct
the whole deformable scene implicitly with a deformation
field. We argue that they are inefficient and hard to fit di-
verse real-world videos. In contrast, we use an explicit
reconstruction for generalization and efficiency, where we
separately track, reconstruct, and synthesize the foreground
and background to overcome the geometry inconsistency.
Several novel and effective modules are proposed for better
performance and visual results. We demonstrate the advan-
tage of the proposed method against the existing alterna-
tives in a collection of our captured selfie videos with the
support of quantitative and qualitative results.

1. Introduction

Novel view synthesis (NVS) is one of the classic tasks
in computer vision. The goal is to generate new viewpoint
images of the scene, given a set of real images or video
of the scene acquired from known viewpoints. NVS has
a plenty of practical applications. For example, it enables
photo/video editing software to manipulate objects in 3D
space and helps create virtual reality environment. Previ-
ous works [29, 35, 36] usually assume that the scene is
static, while it is often not true in real world scenarios.
Geometric methods usually consider a highly constrained
setup that multiple synchronized cameras capture videos at
a same time. Dynamic scenes can then be considered as
static given a collection of images taken at different view-
points at the same timestamp under this setup. However,
synthesizing a novel view image with a video footage cap-
tured by a single camera is a more challenging, general, and
under-explored problem. Our work falls into this area and
we approach it using a combination of multi-view geometry
and deep learning based methods.

*Indicates equal contributions and joint first authors.

Figure 1: Novel view selfie synthesis. Our method takes
a selfie video as input and renders novel images from new
viewpoints. Green boxes stand for the camera path of orig-
inal video, and blue boxes stand for the camera path of our
rendered new video.

Modeling people with hand-held cameras is challenging
due to the non-rigidity, e.g., we cannot keep perfectly still
when capturing selfie videos. This causes the scene geom-
etry to be inconsistent across multiple views, making the
static rendering methods [29, 35, 36] unfeasible and usually
results in artifacts due to inaccuracies created by the scene
dynamics. The bulk of this geometric inconsistency occurs
between the static background (which is usually rigid) and
the dynamic foreground, which for selfie videos is usually
mostly rigid, but not the same rigid motion as the back-
ground. In this paper, we are interested in this special case
of dynamic novel view synthesis.

Nerfies [31], a recent method that is based on implicit
representation and volumetric rendering, uses two multi-
layer perceptron (MLP) networks to learn a deformation
field for each image and a canonical template for all the
observations. Although high-quality results are reported,
the method is inefficient, e.g., it requires multiple GPUs for
training models on per video basis, and the training time
is up to several days. Besides, in our own experiments we



have found that it is hard to learn the correct deformation,
e.g., see Fig. 5 which shows some of our data and note that
the human pose looks incorrect in column 3. We conjecture
that learning accurate deformation is a highly unconstrained
problem, which requires exhaustive training and sometimes
may converge to a local minimum.

Inspired by the ways that traditional geometric methods
approach tracking and mapping in dynamic scenes [2, 43],
which separately track (and reconstruct) static scene and dy-
namic objects, we propose to track, reconstruct, and syn-
thesize the dynamic and static parts separately, avoiding
their mutual inconsistency, instead of modeling the entire
scene as deformable (as in [31]). The separate synthe-
sized foreground/background images are fused eventually
with a carefully designed fusion scheme. With the rapid
development of deep learning in recent years, state-of-the-
art semantic segmentation networks enable accurate object
segmentation. In our case, dynamic foreground object (hu-
man) and static background (non-human) can be easily seg-
mented with the aid of deep segmentation network [7].

The idea of separate reconstruction does not rely on
specific representations, e.g., implicit or explicit methods,
and we adopt the latter for better generalization. We track
and reconstruct the foreground/background using classic
structure-from-motion (SfM) and multi-view stereo (MVS)
systems [38, 39]. By excluding the foreground in the back-
ground reconstruction, our method is able to render a full
background image. This enables a free combination with
different foreground images, and it also can fill the occluded
background in the original video. We explore a variety of
ways to fuse the synthesized foreground/background im-
ages and find that a deep matting method [26] seamlessly
fuse the synthesized images to a photo-realistic image as
shown in Fig. 4 and Fig. 5.

In this work, our contributions include (a) we propose a
general and efficient framework for synthesizing dynamic
scenes from novel viewpoints that first separately track, re-
construct, and synthesize static/dynamic regions, then fuse
the synthesized images into a photo-realistic image; (b) we
propose full background synthesis which allows for free
combination with foreground images, and it also can com-
plete the occluded background in the original video; (c) we
propose a mask estimation method which aggregates source
view masks, and the estimated mask is refined by a mat-
ting method to seamlessly fuse the rendered foreground and
background images together.

2. Related Work

Image-based rendering has a long history in computer
vision and graphics. Shum and Kang [40] provide a re-
view of early methods, and seminal works after that in-
clude [6, 11, 13, 17, 19, 33]. These methods are mainly
based on multi-view geometry. Recently, deep learning-

based methods [, 9, 10, 16, 35, 36, 41, 42] are proposed,
which also rely on geometric reconstruction. Our method
is most related to SVS [36], which operates on the geomet-
ric scaffold that is reconstructed using the classic structure-
from-motion [38] and multi-view stereo [38]. It aggregates
source view features on the scaffold surface to render the
target view, showing high-quality results in static scenes.
We follow this idea and contribute by extending the static
scene reconstruction to dynamic selfie videos.

Implicit 3D representations [8, 28, 30] are recently pop-
ular in computer vision, and NeRF [29] shows that it can be
used with the volumetric rendering for synthesizing photo-
realistic images. A series of following works [12, 14,21,22,

, 32, 34, 44] extend NeRF to dynamic scenes, in which
Nerfies [31] is the most related to ours. It implicitly recon-
structs the entire deformable scene with a template geom-
etry for all observations and a deformation field for each
image. Although excellent results are reported, the method
is inefficient because it requires training on per test video,
due to the nature of implicit representation. Compared with
these methods, (a) our method generalizes well to different
scenes and hence is more efficient; (b) these methods are
able to represent other non-rigid scenes, while our method
is only applicable to specific scenes such as selfies due to the
human-centric reconstruction and synthesis; (c) our idea of
separate reconstruction can also be used to learn the implicit
representation, which reduces the geometry inconsistency
significantly and simplifies the learning.

The domain-specific knowledge can be used to recon-
struct faces [3, 4, 5] and human bodies [24, 46]. However,
these methods often lack details such as hair and eyeglasses.
Compared with them, our method doesn’t rely on domain-
specific knowledge, and it is able to render details.

3. Method

High-quality 3D human scanning and rendering from the
scan are challenging as it is difficult for a human to keep
perfectly still while taking a selfie video. In contrast, scan-
ning and rendering a static scene is relatively easy. In this
work, we propose to disentangle the foreground (i.e. hu-
man) from the background scene, and we assume the hu-
man mainly undergoes a small rigid motion. As a result,
both parts can be considered as static w.r.t. the camera,
and hence we can reconstruct them individually using rigid
methods. A full background rendering method from geo-
metric reconstruction is presented in Sec. 3.1. In Sec. 3.2,
we present a method to render the high-quality human im-
ages with a carefully designed masking scheme and a ran-
dom sampling-based inlier frame detection method. Fi-
nally, we discuss the seamless fusion of rendered results in
Sec. 3.3 to form a photo-realistic novel view image.



3.1. Full Background Synthesis

In this section, we propose full background rendering
from a collection of N selfie photos. This allows seam-
less fusion with any rendered foreground in our later stage.
However, it is non-trivial because the background in source
views is always partially occluded. First, we reconstruct a
3D background model based on multi-view geometry meth-
ods, in which we remove foreground regions. We then
map the novel view pixels to source views via projective
geometry. Color features on valid background regions are
extracted from the source view images and aggregated to-
gether. Finally, a neural renderer is adopted to convert the
aggregated features to a target color image.

Tracking and Reconstructing Background. First, we seg-
ment images into foreground and background regions. Af-
ter experimenting with different semantic segmentation net-
works, we choose the DeepLabV3 [7] model that is pre-
trained on COCO dataset [23]. “Person” segments are con-
sidered as foreground while the remaining regions are con-
sidered as background. Second, we use the COLMAP [38]
system for estimating camera intrinsic K3 and extrinsics
{P,;}}N,. Towards accurate camera poses estimation
for background reconstruction, we remove the DoG key-
points [25] detected in foreground regions before running
feature matching and bundle adjustment. Third, with the
estimated camera poses, we conduct the dense reconstruc-
tion using the classic MVS system [39], which estimates a
semi-dense depth map, Dy, ;, for each image. Finally, we
fuse all depth maps {D;;}Y, into a point cloud and fit a
surface mesh M, [20] from the point cloud. This removes
outliers significantly and densely represents the 3D geome-
try of the background scene.

Background Mapping. In order to render a novel view im-
age, denoted as the target image I;, we need to establish
dense mappings between the target view and background
regions in the source views, thus the color features from
the source views can be aggregated and converted to target
colors via neural rendering. To establish the mapping, we
cast rays through a processed mesh M}, in which the fore-
ground mesh is removed, from the inquired target camera
pose P, to derive the target background depth D;. It is used
with the pre-computed {P,;}Y ; for mapping. The details
are explained as follows.

The mesh M, derived from reconstruction contains the
noisy foreground. We hope to remove that to ensure that
the derived target depths are sourcing from the background.
It is non-trivial to operate in mesh space M. We propose
to mask out foreground from the estimated depth maps us-
ing the segmentation mask before fusing them to the point
cloud and mesh instead. Note that we dilate the foreground
mask for completely removing the foreground because the
segmentation is imperfect in the first place. As a result, we

Our Rendered

Mask Our Depth

Figure 2: Full background synthesis. Our method can ren-
der full background images, and hence it enables complet-
ing the occluded background in the original video. We
compare with the most recent video completion method
FGVC [15]. The full video comparison is attached in the
supplementary material.

obtain a pure background mesh M;.

After obtaining M, a target view depth at a novel view-
point can be derived by ray-casting. An example of ren-
dered background depth is illustrated in Fig. 2, where white
regions in the depth map are not reconstructed in the mesh,
and we fill them with infinite positive values. Next, a dense
correspondence, [, x¢ ;|, between the target view and i-th
source view can be found via

x,; = KT K, (2, Dy), (1)

where T} = P, ;P! is the relative camera transformation
between the two views and x; is the pixel (homogeneous)
coordinates. However, the established dense mapping is
not necessarily the background-background matches since
D, can also be reprojected to foreground regions in source
views. Therefore, not only computing depth consistency
as conducted in [35, 36] to remove inaccurate matches, but
also we eliminate invalid background-foreground matches
via semantic consistency. A match is regarded as invalid if
it falls into the foreground regions in source views. The di-
lated mask is used to avoid wrong segmentation labels. As
a result, only valid background-background matches will be
used in the following rendering step.

Neural Rendering. The mapping obtained above can
be used to aggregate source view features such that the



aggregated features can be blended into a target image.
Firstly, we extract source image features via a U-Net based
encoder [37], then we aggregate features {vt,i}fvzo for
each target pixel using the valid background-background
matches. Finally, we adopt an off-the-shelf rendering net-
work [36], which takes aggregated features as input and out-
puts the target color, where the view-dependent effects are
considered. The network is trained on Tanks and Temples
dataset [18], and we find it generalizing well to our selfie
videos without finetuning. A dense background rendering
example is shown in Fig. 2 (Our Rendered). We refer read-
ers to [36] for more details about feature extraction, feature
aggregation, and color regression.

3.2. Foreground Synthesis

Foreground synthesis shares a similar idea as the back-
ground synthesis in Sec. 3.1. We track and reconstruct a
3D human model from the source images first, followed by
establishing mapping of foreground regions between target
view and source views. Once the dense correspondences
are obtained, the color features are aggregated from source
views and blended into a single foreground image. How-
ever, the difference is that we assume that the foreground
(human) is dynamic but almost rigid, while background is
always static. The dynamic nature causes geometric incon-
sistency between two parts, and we show that individual
foreground reconstruction is helpful in reconstructing high-
quality 3D human models. Moreover, we present a voting-
based masking scheme from multi-view information. The
mask generated will be used for fusion in later stage. Lastly,
we explicitly remove frames containing geometric inconsis-
tent foreground using a RANSAC-based inlier frame detec-
tion, which further improves the reconstruction result.

Tracking and Reconstructing Foreground. Although
people cannot keep perfectly still while taking selfie videos,
we observe that the movement is usually a small rigid mo-
tion, i.e. the body shape doesn’t change much during cap-
turing. Therefore, we can still use COLMAP [38] and
MVS [39] for camera tracking and dense reconstruction as
presented in Sec. 3.1. In contrast, we remove the keypoints
detected in background regions for camera tracking, thus
we construct a point cloud and surface mesh for foreground
mapping. We discuss the benefit of this individual fore-
ground reconstruction as follows.

First, the SfM concept builds upon the static world as-
sumption, where we estimate the camera poses and depths
w.r.t. the static world. However, in this tracking and re-
construction, we treat the dynamic person as a static ob-
ject and it allows estimating the camera poses relative to the
static human. Hence, this camera trajectory may be differ-
ent from the actual path taken by the camera relative to the
static world since the camera trajectory takes both actual
camera motion and human motion into account.

Single Separate Inlier

Figure 3: Point cloud visualization. Previous methods re-
construct an entire scene in a single model, which causes
poor representation for foreground due to geometry incon-
sistency. We propose to separate two parts and detect inlier
frames for foreground reconstruction.

Second, separate reconstruction avoids jointly modeling
a dynamic object and a static scene under the single static
world assumption, which causes inconsistent geometry on
foreground as shown in Fig. 3 (Single). By separating them,
the reconstruction accuracy for both regions can be im-
proved. An example of the reconstructed foreground point
cloud is shown in Fig. 3, which demonstrates the advantage
of our separate reconstruction over reconstructing the whole
scene together. Moreover, the quantitative results in Tab. 2
show the improved reconstruction accuracy, as represented
by the decreasing in reprojection error of face landmarks
from Error-Singles to Error-Ours.

Mask Aggregation. Similar to background rendering, we
find correspondences between target and source views using
the reconstructed mesh, and we use the pre-trained model in
SVS [36] for rending images. The rendered image consists
a photo-realistic human foreground with noisy background,
since we perform the human-centric tracking and recon-
struction. To determine the foreground mask accurately,
we aggregate foreground/background labels from searched
source pixels. Specifically, we regard one target pixel as
foreground when more than half of its correspondences are
predicted as foreground in source views. Otherwise, it is
regarded as background. The results in Tab. 3 demonstrate
that our estimated mask (Fig. 4(b)) is highly consistent with
the predicted segmentation mask of the target view, which
also reflects the high accuracy of our reconstruction.

Analyzing Reconstruction Accuracy. We propose a sim-
ple method to verify the accuracy of foreground reconstruc-
tion, which checks the reprojection error of facial land-
marks. This is based on the fact that faces are usually not
occluded in selfie videos. The method can also be used in
extreme cases to remove outlier frames that are not well-
registered. The algorithm is described below.

First, we detect 2D facial landmarks in all images using



Figure 4: Mask and fusion. We show the hard fusion (a)
with the estimated mask (b) and the matting fusion (c) with
the alpha map (d).

the face mesh by MediaPipe [27]. With the estimated cam-
era poses in foreground reconstruction, we randomly sam-
ple m = 10 images and triangulate 3D facial point clouds
from the detected 2D landmarks. Second, we project the
triangulated 3D facial points to all images. The projected
2D facial points is thus compared with the detected facial
landmarks to obtain a reprojection error. We regard an im-
age as an inlier if the averaged reprojection error is below
a threshold, e.g., 3pz. Third, we repeat the above steps for
n = 30 times, and we save the best model that finds the
most inlier frames. The reprojection error and inlier num-
bers can be used to analyze the reconstruction accuracy, as
shown in Tab. 3. We provide an example of a reconstructed
point cloud from only inlier frames in Fig. 3.

3.3. Background and Foreground Fusion

In previous sections, we introduce how to generate the
background and foreground images with the segmentation
mask. Here we introduce two fusion schemes, namely hard
fusion and matting fusion.

Hard Fusion. Given the foreground mask by aggregation,
a straightforward fusion approach is to crop the foreground
image (i.e., human) using the mask and paste it onto the
dense background image obtained in Sec. 3.1. It works well
in most regions, but an artifactual object boundary may ap-
pear as shown in Fig. 4(a).

Matting Fusion. Toward seamless fusion, we use the im-
age matting method [26] to refine the estimated mask. An
example is provided in Fig. 4. First, we dilate the mask (b)

by 5pz to generate a trimap, which indicates the opaque and
unknown regions. Then we feed the trimap and foreground
image into the matting network to obtain an alpha map «,
as visualized in (d). Finally, we fuse foreground (F;) and
background (B;) images by alpha matting,

The fused result I;, as visualized in (c), shows a
smoother object boundary than the Hard Fusion result (a).
Moreover, the quantitative results in Tab. 1 prove the advan-
tage of Matting Fusion over Hard Fusion.

4. Experiments

4.1. Evaluation Dataset and Metric

Dataset. We evaluate the proposed method on a collection
of our captured selfie videos. During capture, users usually
undergo a small rigid motion including small movement and
rotation. We use the front camera of an iPhone 12 Pro Max
to capture selfie videos. The video length ranges from 5 to
15 seconds with 4K resolution, and we extract 100+ im-
ages per video. Notice that the method proposed in this
work is a general framework, and network training is not
required on new videos, unlike the prior arts using implicit
representation [29, 31].

Metric. We use three widely-used evaluation metrics for
analyzing results. The PSNR and MS-SSIM [45] are used
to evaluate the low-level image differences to the ground
truth, and we use the LPIPS [47] metric to evaluate the high-
level perception differences. It is based on convolutional
features, and it better correlates with human perception.

4.2. Evaluation Results

Novel View Synthesis. We compare our method with
the state-of-the-art, including NeRF [29], Nerfies' [31],
FVS [35], and SVS [36]. The quantitative results are re-
ported in Tab. 1, and the qualitative comparison is shown in
Fig. 5. NeRF and Nerfies are trained and validated on all
test images due to implicit representation, while there is no
training on test sequences required in other methods. FVS,
SVS and Ours firstly track and reconstruct the scene using
all the frames. Since our available ground truth is the cap-
tured video itself, for evaluation purpose, we use { P;}V_;
as the novel viewpoints and use the remaining images in the
video as the source views. The synthesized target image I;
at viewpoint P; is evaluated against I;. 960 x 540 image res-
olution is adopted in these methods. As NeRF and Nerfies
are trained and tested on 480 x 270 resolution images, so
we re-scale the ground truth and the results of all methods
to this resolution for a fair comparison.

'We use the official COLAB version provided by the authors.



Table 1: Novel view synthesis results. The values in brackets stand for image numbers. The PSNR (P) and MS-SSIM
(M) indicate low-level image errors, and the LPIPS (L) indicate high-level perceptual errors. Ours-H stands for Hard Fusion,
while Ours-M is Matting Fusion. Foreground (FG) and background (BG) synthesis are also evaluated individually for ablation

study, where SVS can be viewed as our baseline.

Methods A (136) B (93) C(124) D (123) E (136)

Pt Mt LJ Pt Mt L Pt Mt L} Pt Mt LJ Pt Mt L}
NeRF 30955 0976 0.162 | 18.638 0.632 0.610 | 28.729 0.949 0.188 | 29.890 0.955 0.214 | 28.019 0.959 0.185
Nerfeis 16.758 0.623 0.486 | 15.640 0.556 0.458 | 18.404 0.596 0.418 | 17.027 0.537 0.458 | 15.594 0.605 0.392
Full FVS 30.660 0.981 0.089 | 27.584 0.974 0.080 | 24.520 0.928 0.166 | 25.611 0.946 0.128 | 30.877 0.986 0.078
SVS 30.584 0.983 0.083 | 27.345 0.967 0.087 | 25308 0.933 0.160 | 26.032 0938 0.135 | 29.581 0.980 0.079
Ours-H | 30.564 0.987 0.087 | 28.106 0.980 0.077 | 29.078 0.974 0.111 | 29.607 0.982 0.093 | 29.638 0.988 0.079
Ours-M | 31.226 0.988 0.083 | 28.399 0.981 0.074 | 29.547 0.975 0.106 | 30.668 0.984 0.088 | 31.132 0.990 0.074
FG SVS 37.102 0.992 0.043 | 33.686 0.988 0.032 | 29.809 0.959 0.071 | 29.892 0.962 0.070 | 33.510 0.988 0.040
Ours 39450 0.995 0.042 | 34.762 0.992 0.027 | 33.022 0.984 0.041 | 35.619 0.993 0.038 | 36.312 0.996 0.030
BG SVS 34.276  0.995 0.028 | 30.987 0.984 0.042 | 32.121 0.985 0.057 | 33.042 0.978 0.040 | 34.816 0.995 0.031
Ours 33253 0994 0.036 | 31.736  0.991 0.039 | 35492 0.994 0.051 | 35.730 0.995 0.039 | 34.302 0.994 0.039

NeRF [29] does not take dynamics into consideration curate reconstruction, contributed by separate modeling.

which results in (1) difficulty in learning the implicit rep-
resentation, revealed by the noisy synthesis in sequence B;
(2) ghosting/blurring effect as shown in other videos. How-
ever, low-level metrics (PSNR and SSIM) are “friendly” on
blurry result as discussed in the supplementary material so
NeRF does not show the significant downgraded results in
PSNR and SSIM metrics on most videos, while the qualita-
tive result does not match with the quantitative evaluation.
However, it is reflected in high-level evaluation metrics like
perception error (LPIPS) in all the sequences.

Nerfies [3 1] reconstructs the entire deformable scene by
learning a deformation field for each image. It indeed shows
better visual results (Fig. 5) than NeRF, but it is not reflected
in the quantitative results. Besides, we find it difficult to
learn accurate deformation in our data, e.g., the human ori-
entation is different from the original image in Fig. 5. We
suppose that the performance can be improved by more ex-
haustive training. However, we argue that this solution is
inefficient and learning the deformation field from appear-
ance is very challenging. Compared with it, our method
makes the problem easier by separate modeling. Human is
considered “static” w.r.t. camera in the separate foreground
reconstruction such that the dynamics are suppressed.

FVS [35] and SVS [36] show similar results since their
reconstructions are the same, e.g., they reconstruct the scene
as if it is static. This allows for generating smooth/blurry
qualitative result and showing good scores in evaluation
metrics, but it brings about many artifacts due to inaccu-
rate reconstruction. For example, objects are blurred and
deformed because non-match pixels are fused. Moreover,
their performance drops significantly when the geometry in-
consistency between the foreground and background is sig-
nificant, e.g., in the sequence C and D (Tab. 1). Compared
with them, our method shows better results due to more ac-

New Camera Path Video. The original video is used above
for quantitative evaluation. To further validate our method
and compare the method with others in completely novel
viewpoints, we provide two novel camera paths for qualita-
tive evaluation, including an interpolated path and a spiral
path. First, we extend the original video (20fps) to a high
frame rate (60fps) video by interpolating the original cam-
era trajectories. Note that we have two camera paths for
the foreground and background, and we interpolate them
independently and fuse the rendered results together. In this
case, the viewpoint difference to the original one is small.
Second, we render a spiral path [31], as shown in Fig. 1.
This is very challenging due to large viewpoint changes.
Nevertheless, our method still shows the compelling results
in most videos. We attach the rendered videos in the sup-
plementary materials.

Background Completion. Our background synthesis can
be used for video completion, and we show a visual com-
parison to FGVC [15] in Fig. 2, which is based on optical
flow and achieves state-of-the-art performance. We discuss
the advantages and disadvantages of both methods below:
(a) Our method works better than FGVC in static scenes
by leveraging a globally consistent reconstruction. How-
ever, FGVC works well in general dynamic scenes since 3D
reconstruction is not considered in most video completion
frameworks. (b) Our method is faster than FGVC, e.g., our
method takes about one hour for dense reconstruction and
rendering, while FGVC requires up to four hours to com-
plete a video. Both methods are tested on the video with
100+ images and 960 x 540 resolution. (c¢) Our method can
render a novel viewpoint background image, while FGVC
can only complete the original video. A video comparison
is provided in the supplementary materials.
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Figure 5: Synthesized novel views. The dataset name is consistent with Tab. 1. Images are cropped for visualization. Find
the full video comparison in the supplementary material.

Running Time. Our method takes about one hour for track- single Nvidia RTX-2080 GPU. FVS and SVS take half of
ing and reconstruction from 100+ images with 960 x 540 the time for dense reconstruction because our method re-
resolution, and it renders a novel view image at 1 fps in a constructs two parts separately. The image rendering speed



Table 2: Reconstruction accuracy. Previous methods recon-
struct the whole scene in a single coordinate system, and
Ours conducts separate reconstruction. We use reprojection
error of face landmarks for analysis, and we regard images
with a low reprojection error (< 3pz) as inlier.

Dataset A B C D E
Frame 136 93 124 123 136

Error-Single (px) | 3.53 4.87 542 26.11 6.39
Error-Ours (px) 147 236 285 2.87 218

InlierNum.-Single | 68 23 25 1 23
InlierNum.-Ours 136 83 95 71 123

for these two methods is similar to ours. NeRF [29] re-
quires about ten hours for training a video with 480 x 270
resolution in the same device, and it takes about 6 seconds
to render a new image. Nerfies requires 8 GPUs for training
the full-featured model, and we train the author-provided
COLAB version due to equipment limitation. It requires
about 10+ hours for training using Google TPUs, and the
inference speed is about 2 seconds per image.

4.3. Ablation Study

Separate Reconstruction. Our major motivation in this
work is overcoming the geometry inconsistency between
foreground and background by separate modeling. The
baseline method is SVS [36], which reconstructs the whole
scene together. We evaluate the foreground/background
synthesis individually and present the result in Tab. 1, where
we use DeepLabV3 [7] to predict the segmentation mask,
and we erode both regions by 11pz for avoiding including
the object boundaries in the evaluation. The results demon-
strate that our foreground rendering is clearly better than
SVS, due to more accurate representation by converting the
dynamic foreground to a “static” scene w.r.t. the camera.
Our background synthesis also shows more accurate geom-
etry than that of SVS by excluding the foreground in track-
ing and reconstruction. In sequences A and E, our method
is comparable to SVS. We conjecture that it is because we
may remove too much foreground in the process.

Reconstruction Accuracy. We analyze the foreground re-
construction accuracy using the reprojection error of the fa-
cial landmarks (Sec. 3.2) and present the result in Tab. 2.
It shows that the reprojection error of separate reconstruc-
tion has been significantly reduced from a single reconstruc-
tion. The number of inlier frames is also reported. A visual
comparison is provided in Fig. 3, where using only the in-
lier frames for foreground reconstruction leads to better vi-
sual performance. We mainly use this method for analysis
purposes in this work, without deducting the outlier frames
from the original source set. It is because our separate re-
construction is good enough for our collected videos and

Table 3: Mask evaluation. We compare our mask that is
aggregated from source views to the mask that is predicted
on the target view by DeepLabV3 [7].

Dataset A B C D E
IoU (%) | 994 995 989 99.1 994

there is no much difference in quantitative evaluation. Nev-
ertheless, this method can be applied for videos with in-
consistent foreground geometry and produce a more stable
synthesis for rendering novel view images. We attach demo
videos in the supplementary material.

Aggregated Mask. To validate the accuracy of our aggre-
gated mask from source views, as introduced in Sec. 3.2, we
compare it with the mask predicted by segmentation net-
works. Here we use DeepLabV3 [7] to predict the mask
for all images and use it as ground truth. We use the inter-
section over union (IoU) metric for evaluation and present
the result in Tab. 3, which demonstrates that the aggregated
mask is highly consistent (99%) with the ground truth.

Matting Fusion. We evaluate the effectiveness of the fu-
sion schemes proposed in Sec. 3.3. The quantitative com-
parison between Hard Fusion and Matting fusion is pre-
sented in Tab. 1, where Matting Fusion (Ours-M) consis-
tently outperforms Hard Fusion (Ours-H) in all sequences.
As discussed in Sec. 3.3 and shown in Fig. 4, Matting Fu-
sion further details the foreground/background mask with
better object boundaries. Moreover, since the input to the
matting algorithm [26] includes a rough mask (the aggre-
gated mask in our case) and a reference image (rendered
foreground image), the matting result also depends on the
quality of rendered foreground images. This reflects the
good foreground rendering ability of our method.

5. Conclusion

In this paper, we propose a novel system to recon-
struct selfie videos casually captured by mobile phones for
free-viewpoint rendering. Inspired by traditional geomet-
ric methods, we separately track, reconstruct, and synthe-
size background and dynamic foreground to avoid their ge-
ometry inconsistency. By using several excellent computer
vision techniques in our system, including geometric re-
construction, semantic segmentation, neural rendering, and
image matting, the proposed method is able to render full
background and accurate foreground images, and seam-
lessly fuse the synthesized foreground/background images
together. Leveraging geometric methods and deep learning
modules, our system can perform novel view synthesis in an
efficient way. More importantly, the method can be applied
to any selfie videos without further training. Both quantita-
tive and qualitative results demonstrate the advantage of our
proposed method over existing alternatives.
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