

图森 tu Simple

Problem

SfMLearner [1] provides a great baseline for unsupervised learning of depth and ego-motion using monocular video. However,

- It produces scale-inconsistent predictions
- The performance is limited due to dynamics and occlusions

Contribution

- Geometry-Consistency loss for scale-consistency
- Self-discovered Mask for handling dynamics and occlusions

Learning Framework

$$L = \alpha L_p^M + \beta L_s + \gamma L_{GC},$$

Proposed GC and Mask

$$\begin{split} D_{\text{diff}}(p) &= \frac{|D_b^a(p) - D_b'(p)|}{D_b^a(p) + D_b'(p)} \\ L_{GC} &= \frac{1}{|V|} \sum_{p \in V} D_{\text{diff}}(p) \\ M &= 1 - D_{\text{diff}}, \end{split}$$

Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video

Jia-Wang Bian¹², Zhichao Li³, Naiyan Wang³, Huangying Zhan¹², Chunhua Shen¹², Ming-Ming Cheng⁴, Ian Reid¹² ¹University of Adelaide, ²Australian Centre for Robotic Vision, ³TuSimple, ⁴Nankai University

Visualization of Depth and Mask

Depth Results on KITTI

Methods	AbsRel 🗸	Acc (<1.25) 个
SfMLearner [1]	0.208 (0.198)	0.678 (0.718)
CC [2]	0.140 (0.139)	0.826 (0.827)
Ours	0.137 (0.128)	0.830 (0.846)

- > () indicates pretraining on Cityscapes dataset
- SfMLearner [1] is our baseline
- \succ CC[2] is previous SOTA method that jointly learns depth, ego-motion, optical flow, and mask segmentation
- \succ CC [1] needs 7 days for training, while 32 hours for our method

Depth Results with different network and resolution

		Error ↓			Accuracy ↑			
Methods	Resolutions	AbsRel	SqRel	RMS	RMSlog	< 1.25	$< 1.25^{2}$	$< 1.25^{3}$
DispNet	416×198	0.151	1.154	5.716	0.232	0.798	0.930	0.972
DispResNet	410 × 120	0.149	1.137	5.771	0.230	0.799	0.932	0.973
DispNet	832×256	0.146	1.197	5.578	0.223	0.814	0.940	0.975
DispResNet		0.137	1.089	5.439	0.217	0.830	0.942	0.975

Inference Time (per image or pair)

	DispNet	DispResNet	PoseNet
128×416	4.9 ms	9.6 ms	0.6 ms
256×832	9.2 ms	15.5 ms	1.0 ms

Visual Odometry Results

Reference

- CVPR, 2017.

Code and Paper

- \succ Scan the QR code.
- Google "SC-SfMLearner"

	5	Seq. 09	Seq. 10		
	t_{err} (%)	r_{err} (°/100m)	t_{err} (%)	r_{err} (°/100m)	
1	15.30	0.26	3.68	0.48	
	17.84	6.78	37.91	17.78	
	11.93	3.91	12.45	3.46	
	11.2	3.35	10.1	4.96	
	8.24	2.19	10.7	4.58	

> [1] Zhou et al. Unsupervised learning of depth and ego-motion from video. In

[2] Ranjan et al. Competitive Collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation. In CVPR, 2019.

